【防伪查询】 | 【内网办公】 | 【在线咨询】
  • 787
米乐m6官网登录
当前位置:首页 > 产品中心 > 声屏障

米乐m6官网登录渐变指向性阵列扬声器新技术在专业剧场扩声中的应用

发布时间:2024-04-10 10:36:03 来源:米乐M6官网备用网站 作者:米乐m6官网登录入口

  目前广泛使用于大型户外演出的传统线阵列扬声器系统被应用于剧场等室内环境时,由于建筑声学条件,如反射和混响,以及阵列化和增益的影响,导致扬声器系统的性能及观众实际听感遇到极大挑战。本文回顾了常规线阵列扬声器系统的原理和性能,探讨理想阵列扬声器的声学特性,从而引入一种全新的阵列扬声器理论和技术——渐变指向性阵列,并将此技术及解决方案应用于实际剧场扩声案例,可以克服室内环境带来的复杂影响,获得最佳的声场覆盖均匀度,进一步提升音色平衡性和语言清晰度。

  线性阵列扬声器是一组排列成直线、间隔紧密的辐射单元,并具有相同的振幅与相位,通过线性传输方式,提高传输距离,降低声音传输过程中的衰减度。线性阵列扬声器系统下端常常有一点稍稍的弯曲,目的是为得到更大的垂直覆盖角。主体部分对远场,弯曲部分对近场。线性阵列的概念并不是而今才有的,最初是由美国著名声学专家H.F奥尔森提出的。

  1957 年,奥尔森先生出版了经典声学专著『声学工程』(AcousticalEngineering),论述了线性阵列适合远距离声辐射。这是因为线性阵列能够提供非常良好的垂直覆盖面的指向性,以取得良好的扩声效果。

  线阵音箱的主要应用场合是大型户外演出,在90年代初被提出,并且迅速在户外巡回演唱会的应用方面普及。传统的线阵列音箱主要是为大型户外摇滚音乐会而开发的,这种演出的场地大,观众多,导致声压的远距离传输损耗问题严重。该系统对这类应用很有效,因为线阵列扬声器阵列位于舞台的两侧,使得大部分观众都处于垂直于扬声器阵列的主要覆盖区域内,水平覆盖范围足够宽,以便为所有现场观众提供足够的声能量,包括舞台两侧以及正面的观众,这已经成为巡回演出扩声应用领域的标准。

  这项新技术很快就开始用于固定安装,尤其在剧场演出场地。但是,当我们利用传统线阵列模块构建扬声器系统用于室内扩声的固定安装时,存在两个重大问题。第一个问题是,为了适应室内观众座位布局,扬声器阵列必须挂高,并且具有很大的垂直覆盖角,观众不再位于传统线阵列的主要辐射平面,而传统线度,阵列的下半部分音箱必须散开形成一个有弧度的形状(J 形阵列),以覆盖增加的垂直角度,音箱间出现间隔和缝隙,造成声干涉即梳状滤波效应。而阵列的上半部分也要求形成一个弧形的形状,而不是直线,以避免耗散多余的能量。同时,由于室内观众的分布,必须对不同模块进行增益调节,否则会造成近场观众区声压级过大,而远场声压级过小,而增益调节进一步影响声场分布和音色平衡。简单地说,传统的线阵列扬声器系统已经无法完全满足室内扩声的需要,传统线阵列的非预期使用,使得不同辐射方向上的频率响应差别很大。第二个问题与水平覆盖控制有关。传统线阵列具有宽广的水平覆盖,满足大型户外场地的扩声需求,但这一特性在固定安装的室内环境里造成来自侧墙和天花板的声反射,极大影响主观众区内的音色平衡性和清晰度。

  如上所述,传统线列阵扬声器系统用于剧场等室内扩声遇到建声环境带来的挑战,无法满足室内扩声的特殊要求,从而清楚地表明,我们迫切需要一种全新的阵列技术解决这些问题,必须提供以下性能特点,才能理想地应用于室内固定安装的扩声系统。

  每个模块提供的指向性可变具有不同覆盖角度的模块必须易于排列从而提供复杂的覆盖面形状来与房间相匹配

  在水平和垂直方向的覆盖控制都必须下潜至1kHz 或以下,从而最大限度地减少房间特性对音色平衡性的影响

  由多个模块形成的虚拟声源必须是真正连续的,要避免模块之间的接缝每个模块的幅度和相位必须完全相同以形成真正相干的虚拟声源,使得在阵列的主要覆盖区域内具有一致的音色平衡性

  为了讨论室内建筑声学特性对扬声器系统音色平衡性的影响,对比了同一个房间在三种不同的平均吸声系数的情况下的频率响应。对四种不同类型的扬声器系统进行比较,每个都具有不同的投射角度控制特性,分别是:全指向性,随频率变化的中等指向性(典型的纸盆扬声器),小规格号角(典型的线阵列)以及中等规格号角(更好的覆盖角控制)。中等规格号角的覆盖范围已在所有频段(1kHz及以上)被设置为与观众座位区的形状一致,而小规格号角在4kHz恰好覆盖观众区域,在更低频的范围则变宽。研究中使用了BoseModeler声场仿真软件,因为其计算的准确性已被认证11)。图1以1k-4kHz的平均声压级图对比展示了各种类型的扬声器系统向地面、墙壁和天花辐射的能量。频率响应是在同一房间的相同位置计算得到的,房间有三种不同的平均吸声系数(a=0.10,0.17,0.40)。显然,当扬声器的指向性几乎不采取控制时,更多的能量被投射到墙壁和天花板上。图c和图d则清楚地显示中等号角的投射角度控制优于小规格号角,可以进一步减少能量的损耗。

  请注意,这些频率响应已相对于直达声响应进行了归一化。结果显示,采用较少指向性控制的扬声器系统的频响更容易受到房间特性的影响,特别是平均吸声系数降低时。

  图2:不同类型的扬声器系统由于房间声学而引起的频响变化的比较这清楚地表明,在较宽频带具有更好的指向性控制性能的扬声器,在保持音色平衡性方面有显著的优点,可以不受房间特性的影响。

  没有方法能够完全避免两个具有一定物理间隔的声源之间的相位抵消。两个声源之间的距离必须足够小,以确保在有用的频段内,相比于声音传播的距离,两条声路径之间的距离差足够小。换句话说,传播距离越短,相位抵消效应就越严重。有趣的是,线阵列利用这些现象非常有效地在垂直于阵列高度方向的平面内控制辐射方向。当一个线阵列的传播距离相比于自身尺寸超过一定范围时,线阵列就转变为一个点源。在技术上不可能完全消除相位抵消效应,除非我们能找到一个没有物理尺寸的声源。实际上,如果我们能够把相位抵消现象移动至主要可听声的频段以上,这将大有裨益。自然,这里会牵涉到关于何为主要可听声频率上限的争议,然而我们经过一些比较,认为只要把抵消现象移至10kHz以上,就能得到不错的性能,而且比目前市场上的解决方案要好。这意味着,两个声源的传播距离之差必须小于17.0mm(10kHz频率对应的波长的1/2)。考虑到扩声扬声器的典型应用,我们还假设最小的传播距离为10米。有了这些假设,两个声源之间的最大间距离就可以计算出来,如果我们限制最大的目标角度覆盖范围为正负30度(合计60度),就应为33.9mm或更小。这就意味着,两个相邻模块的波导管喉部边缘的间距必须在30mm左右,以避免模块之间的“可闻音缝”。

  一种独特的具有可变号角喉部的导波管结构已被BOSE公司开发出来,如图3所示,它可以装配到被称作连续弧形衍射单缝的装置中,以使我们能够实现这一有富挑战性的目标。

  喉部适配器出口的实际尺寸为60mm(高)x15mm(宽)。相邻扬声器模块之间的喉部适配器的中心距离为90.0mm(从模块的喉部适配器下缘到其下面的模块的喉部适配器上缘相距30.0mm),包括两个模块的顶板和底板。这种独特的结构使我们得以将模块添加到阵列中而不引起10kHz以下的相位抵消,同时能够独立地从0到60度配置每个模块的垂直覆盖角。

  2.2不同类型的扬声器模块构成的阵列的辐射特性比较为了在预期覆盖角内观察阵列频率响应的一致性,由不同类型扬声器模块构成的阵列的辐射特性通过Modeler可用的算法进行了计算。各类型的扬声器模块的构造和设定如图4所示。

  目标垂直覆盖角度设定为80度,进行的比较如下:两个具有40 度垂直覆盖角的模块用来表示一个典型的点声源扬声器解决方案。同时使用了两种不同类型的线度的波阵面,另一个具有5度的波阵面。每个模块内的虚拟声源被设置得足够小,以实现模块内的连续源假设。八个模块用以实现80度的覆盖角。相邻模块的号角喉部的顶部与底部之间的距离被设定为90mm,以表示当今线)。

  我们使用了八个BOSE公司专利的新型扬声器模块(每一个都具有10度辐射角且由6只可变号角适配器构成),每个模块之间有30mm 的间距。每种类型的扬声器模块的响应计算结果以极坐标形式示于图5。由点声源扬声器模块构成的阵列表现出显著的相位抵消现象,每个频带都会在一些特定的辐射角出现相位抵消,而对于线阵列,在每个模块的接缝处都观察到相位抵消,与例子中所用模块的波阵面角度无关。每个线阵列模块的轴线方向不会出现相位抵消。然而,无论每个模块的波阵面角度如何,线阵列模块之间的声源的不连续性产生了模块之间的音缝。当增加模块之间的扩张角度以实现更宽的垂直覆盖角,或者对于同样的垂直角度减少模块的数目时,情况将会变得更糟。与此相反,正如我们所预期的,如果阵列由多个BOSE独特导波管技术模块构成,则在所有频段范围内,相位抵消效应几乎被完全消除。

  对个别扬声器模块的增益调节通常用来补偿远距离投射模块与近距离投射模块之间的距离损失17)18)。这会避免在靠近扬声器阵列的观众处产生过大的声压级,同时为离阵列很远位置处的观众输送足够大的声压级。近场和远场模块之间的传播距离之差通常为4倍(例如到房间前部为6米而到后部为24米)或更大。传播距离4倍的差异意味着对于近场模块有12dB的衰减,而这一衰减意味着扬声器模块和功率放大器仅有不足10%的能量可被利用,反过来说有90%的能量被浪费。对阵列中的每个模块进行衰减也意味着每个声源的振幅都会发生变化。另外,对阵列中的各个模块使用特定的滤波,包括FIR滤波,阵列中各声源的相位也会发生变化。但是可以理解,保持每个模块以相同的幅度和相位,是在很宽的频带提供预期的辐射特性的关键。这点很重要,因为频带内均等的辐射才能得到目标覆盖角内一致的音色平衡性。我们给每个声源(模块)施加不同大小的衰减量,然后计算不同类型的模块所构成的阵列的极坐标响应。目标垂直覆盖角被设定为60度。我们使用的声源类型包括线阵列、J 形阵列、恒定阵列曲率(恒定方向性)和一个螺旋阵列结构。其中螺旋阵列的每个模块的目标覆盖角连续变化,从而能够补偿距离损失的差异,以将能量分配到不同的座位区。上述螺旋阵列结构的一个很好的类比,就是由号角构成的阵列,其具有40x20度的近场投射,60x40的中场投射,以及90x60的远场投射。研究中使用具有不同的垂直覆盖角的BOSE新型阵列模块以排除模块之间的声源的不连续性。线阵列和弧形阵列的模块之间的间隙同理被也认为是零。被测试的阵列的结构和垂直覆盖角如图6所示。

  本研究分别以如下三种条件计算出的极坐标响应:第一种是没有增益衰减,第二种是给整个阵列施以6dB增益差,最后一种是给整个阵列施加12dB增益差。每种结构施加增益后的极坐标响应如图7所示。我们马上可以看到,即使使用了增。

上一篇:免费查询环评通报问题!噪声预测免费!精彩直播。公示 下一篇:2023年一级建筑师《建筑结构、物理与设备》考

米乐m6官网登录| 新闻中心| 联系我们

米乐m6官网登录(澳门).备用网站入口 版权所有 冀ICP备15025015号-97